
1540-7993/13/$31.00 © 2013 IEEE	 Copublished by the IEEE Computer and Reliability Societies	 January/February 2013� 15

View from the C-Suite

Eric Grosse and Mayank Upadhyay | Google

Google is investing in authentication using two-step verification via one-time passwords and public-key-
based technology to achieve stronger user and device identification.

I f bad actors can impersonate you to your service pro-
vider, they can do anything you can do. This includes

surprisingly destructive behavior, which they can blame
on you. If you think you aren’t a likely target, remember
that attackers might not know you as an individual, but
they might just want to leverage millions of high-repu-
tation accounts or leverage your account to get to a real
target. So, strong authentication to avoid impersonation
is important.

A well-accepted framework for authentication is
“something you know” paired with “something you
have.” In this article, we describe how Google makes
such a framework accessible to its diverse user base,
what we’ve learned from working at scale, and some of
the directions we’re headed.

Account Types
Not all accounts need strong authentication. We divide
the spectrum of accounts by value:

■■ Users might create throw-away accounts on the
spur of the moment for testing, participating in a
pseudo-anonymous conversation thread, or making
a one-time purchase without saving payment cre-
dentials but with provision for checking order sta-
tus. Almost any lightweight authentication will do.

This area is ripe for innovation but isn’t the focus of
this article.

■■ Routine accounts are intended to be long-lasting and
to protect something of value but do not carry a risk
of large financial or reputational loss. An example
would be a subscription to an online newspaper.
We’d like our authentication methods to be conve-
nient enough to apply to routine accounts. However,
some say strong authentication in this case is overkill,
and we wouldn’t disagree.

■■ Spokesperson accounts are widely understood to rep-
resent users. Examples include a blog with a moder-
ately large following or an account at an online store
with saved credit card numbers. Some might think
that strong authentication is overkill here, too, but we
disagree; hijacking of spokesperson accounts is more
common than the general public realizes. The conse-
quences of a compromise can range from embarrass-
ment to extensive cleanup costs and financial loss.

■■ Sensitive accounts include an individual’s primary email
or online banking accounts. Here, loss of data, either
by deletion or public exposure, is commonly found to
have severe and sometimes unforeseen consequences.

■■ Very high-value transaction accounts are specialized
systems used for irrevocable actions such as cross-
border monetary flow and weapons release. Such

Authentication at Scale

16	 IEEE Security & Privacy� January/February 2013

View from the C-Suite

accounts justify stronger protections than are cov-
ered in this article.

We focus on protecting access to what we call spokes-
person and sensitive accounts. Note that accounts might
move from one category to another over time. For
example, a store account might be downgraded when
its payment credentials expire. Upgrade is more com-
mon and less noticeable—for instance, when a Twitter
account accumulates more followers or a user registers
an email account as a bank-
ing account recov-
ery backup.

Common
Threats
We contend that
security and usabil-
ity problems are
intractable: it’s time to give up on elaborate password
rules and look for something better. Prominent exam-
ples of today’s password authentication system failures
include the “mugged in Madrid” scam directed against
journalist James Fallows’ wife;1 the compromise of
Sarah Palin’s email account during the 2008 presiden-
tial election season;2 and most recently, the multiple
account takeover of journalist Mat Honan.3

People are reactive about security; it’s rational to
invest only as much effort as necessary to reduce risk
to an acceptable level. Even with an easier alternative to
passwords, justifying transition costs would be difficult.
So, we owe it to the reader to not only cite anecdotes
but also systematically list the common attacks used in
the wild.

Phishing is a widely reported password failure
mode: attackers lure users to a login page that looks
like one they’re used to, perhaps by proxying to the real
authentication server or by harvesting their passwords
and even supplemental two-factor codes or security
questions and answers. By reading about the problem
or, even better, hearing about a security breach from
friends and family and observing the pain it causes,
users improve their chances of recognizing an attack.
Password managers can help if they’re well integrated
with the device and browser, so passwords are used only
with the correct sites. However, users would still need to
guard against clever attacks.4

Reuse is another common password failure mode.
A password from a throw-away account at a weakly
defended site might be lost through intrusion, then used
by attackers to access other, more valuable accounts.
Common security advice is to pick a different password
for each site. Although this advice is wise, using mul-
tiple passwords is burdensome unless combined with

a sophisticated password manager. This failure mode
remains among the most common preventable prob-
lems and was a prime motivation for the two-step verifi-
cation system we describe later.

A closely related failure mode is offline brute-forcing.
Many advise choosing a high-entropy password (http://
xkcd.com/936) to harden password hashes, which may
be stolen by SQL injection attacks and other means.5

Users sometimes type their password in the wrong
text field or type a commonly used password rather

than the intended one
owing to muscle
memory. We haven’t
seen evidence that
such lost passwords
are actively abused,
but internal data on
Google employees
indicates that such

mistakes are common and can leak high-value pass-
words. Internally, we mitigate this threat by forcing pass-
word change when such a mistake occurs, but a better
solution would be to use a password manager that under-
stands context and thus can prevent this confusion.

Another authentication failure mode is the use of
easily guessed security question and answers, or as
wags say, “something you know” paired with “some-
thing everyone knows.” Even if nobody knows the
name of your crush in the third grade, there are a finite
number of names to guess. A strong use of security
Q&A is to make up random answers, write them down
in a safe place, and use them only for account recovery.
Such security answers can be thought of as long-term,
stable passwords and resist capture by being stored
offline and rarely used. Because few users will know to
operate in this mode and many would misplace their
answers, it’s probably better to abandon the security
Q&A approach.

Malware infection is another class of failure mode.
For example, Zeus logs keystrokes and steals authen-
tication tokens.6 Although it’s important for users to
run up-to-date software from trusted sources and some
kind of antivirus scanning, these aren’t sufficient on
their own due to the constantly evolving threat of 0-day
attacks that exploit new and unknown bugs in today’s
complex software systems. Building more hardened
platforms is still the best defense, but in this article
we also discuss some approaches for channel binding
authentication tokens to the client device for which
they were issued.

Perhaps most important, password loss can be
undetected, only to resurface later on other devices.
Therefore, we aim to create consumer-ready tools
using hardware-protected public-key cryptography for

Security and usability problems
are intractable: it’s time to give up
on elaborate password rules and

look for something better.

www.computer.org/security� 17

both users and devices. Although other projects focus
on preventing harm from live malware controlling cli-
ent machines or from a server break-in, our goal in this
article is to prevent persistence. After recovering from
an attack, users should be able to regain control of their
accounts without losing any long-term credentials.

Because we focus on technical solutions, it’s worth
acknowledging that some failure modes call for non-
technical solutions. Your roommate knows a lot about
you, even when it’s safe to use your unlocked computer
without getting caught. Although continuity-based face
recognition can conceivably help in this situation, tech-
nology and cryptography aren’t the answer—you need
to get a better roommate.

Device-Centric Authorization
Traditionally, user authentication requires that users
submit a bearer-token credential, such as a password, to
a client device, and the device forwards this on to the
server. This model began at a time when users would
sit down at a simple terminal connecting to a time-
shared computer. Today, the client device is much more
capable and might cache credentials for ease of use (for
example, a Web browser with a password manager or
mail clients that use the Internet Message Access Pro-
tocol [IMAP]).

Instead, imagine that each client device has its own
strongly asserted identity. When you acquire a new
device, you “bless” it with the ability to access your
account. This delegation step might require the device
to submit multiple factors on your behalf the first time
you access an account or require an out-of-band pair-
ing protocol. From then on, the device always asserts its
unique credential to the server.

As a result of this delegation, your device (or your
well-isolated profile on a shared device) is granted per-
manent access to your data. If you lose the device, you
simply revoke that one instance of delegation; this is
clearly less painful than changing your password in the
traditional model, which requires reconfiguring all your
personal devices. Device-centric authorization also
makes abuse detection easier because of the server’s
ability to distinguish between your multiple devices and
to observe their behavior individually.

Today, smartphones follow this model of delegating
full account access to a device. The OS is responsible for
activity timeouts and protecting the locked screen. Even
with a locked screen, the device retains account access
so it can receive calendar updates, incoming chats, and
so on. Devices are often configured to require a short
PIN to unlock the screen. Note that the low-entropy
PIN is of no use by itself to an attacker who might have
tricked the user into revealing it somehow, much like an
ATM PIN is useless without the card.

In this model, strong user authentication is applied
only when acquiring a new device and when making
occasional sensitive transactions, such as setting up email
forwarding, deleting all mail, or making a large purchase.
Users will forget their passwords if these operations are
rare, but that is okay. They should be able to write down
their password and store it in a safe place for these rare sit-
uations, or have pairing techniques (such as short codes)
to bootstrap any new device using an existing device.

Note that this model doesn’t necessarily apply to all
devices and use cases. For example, users might want
a short-term relationship with a device, such as a bor-
rowed machine or kiosk. In this case, the device should
offer a guest mode with an obvious session termination
gesture that clears credentials and cached data.

Two-Step Verification
As its first large-scale measure for client device authori-
zation, Google introduced an opt-in two-step verifica-
tion feature, 2sv. As Figure 1 illustrates, first-time users
log in to Google from a new computer (after passing
the traditional username/password authentication),
and then they’re asked for a six-digit verification code,
which might come from an SMS text message or a voice
call to a preregistered phone, an offline application pre-
installed on a smartphone, or a one-time “scratch code”
from a pregenerated list on their settings page. This code
sets a nonexpiring cookie in the browser that makes the
user’s device a recognized second factor, or a trusted
computer, for all future authentication.

Users can revoke their trusted computers under the
2sv settings at accounts.google.com/security. Note that
this revocation doesn’t erase any cached data on disk. We
recommend using an encrypted file system and OS-level
user separation as a first line of defense against theft.

Our experience with 2sv has been good. Adopted
by millions, it’s among the largest two-factor authenti-
cation deployments in the world. Nearly a quarter mil-
lion accounts added 2sv during the two days after Mat
Honan’s story broke, illustrating a phenomenon that we
observe more broadly: people take security more seri-
ously after an acquaintance or public figure has suffered

Figure 1. After successfully typing the right password
during sign-in, the user enters a code from a preregistered
mobile phone. The user can choose to skip the code next
time on this particular browser.

18	 IEEE Security & Privacy� January/February 2013

View from the C-Suite

harm. After studying hijacking campaigns directed at
high government officials, we found that among the
hundreds whose password had been stolen, presumably
by phishing, two officials had enabled 2sv and were suc-
cessfully protected from compromise.7

However, not nearly enough of our users are pro-
tected, and we recognize that awkward corner cases
and inadequate documen-
tation contribute
to this.8 We will
continue to polish
the rough spots. To
minimize setup time,
we encourage SMS
or voice delivery of
2sv codes. Approxi-
mately 10 percent of our users subsequently install and
provision the offline smartphone application for code
generation, which doesn’t require working cellular ser-
vice or even a registered phone number.

When deployed at scale, some users will experience
account lockout owing to lack of coverage while travel-
ing, temporarily slow text message delivery, loss of the
device, changing of mobile phones without requesting
phone number portability, and so forth. We find that
customer support for account recovery is crucial in
wide 2sv deployment.

Fortunately, many users set up backup modes for
code generation, such as home or work landlines, a fam-
ily member or friend’s phone, and paper-based codes.
These users tend to self-recover from issues related to
loss of their primary 2sv code generator. We’ve also
found that the smartphone app users rarely need addi-
tional help because, among other reasons, they’re unaf-
fected by message delivery issues.

Users with many client-side applications that allow
for only traditional username/password-based sign-in
tend to have the hardest time setting up 2sv. Typical
examples include IMAP-based mail clients on desk-
tops and certain smartphones. To allow backward
compatibility on those apps and devices, we provide
a transition feature called application-specific pass-
word (ASP). An ASP is intended to be a high-entropy
machine-generated password that’s hard to remember
and consequently hard to phish. Unfortunately, the
same properties that increase such passwords’ secu-
rity also cause friction for users. To fix this problem
across the industry, we prefer that client platforms
employ a centralized account management model
with a browser sign-in option, as the Android OS does.
Another weakness of ASP is the misimpression that it
provides application-limited rather than full-scope
account access. (OAuth, which we discuss later, is the
right tool for that job.)

In Android OS versions Ice Cream Sandwich
and higher, 2sv users can set up their phones via a
browser-based sign-in flow that the system offers
when a second factor is necessary. The browser flow
enables a flexible HTML-based UI that incorporates
a 2sv challenge, avoiding the need for ASP. Further-
more, Android’s centralized account management

model makes it unneces-
sary for multiple
apps to ask the user
for the same pass-
word and 2sv code;
instead, these apps
request the sys-
tem account man-
ager for short-lived

scoped tokens for the data they need to access. There-
fore, users in the Android ecosystem have an easier
time setting up 2sv.

Initially, we thought of 2sv as part of user authentica-
tion, much like the one-time password (OTP) tokens
that enterprises commonly require for remote authen-
tication. To make 2sv practical for consumers, we
reduced the default verification requirement to once per
month. But, we found that 30 days is either too short
or too long; it’s annoyingly frequent and disconcerting
when applied independently to every browser in every
device and yet too large a window of vulnerability for a
lost, unlocked device.

We changed our mental model to treat 2sv primarily
as a means of permanently authorizing a client device.
(Users can still achieve the old behavior if desired; the
2sv validation page includes a checkbox that, if not
checked, indicates the 2sv cookie should expire at the
end of the browser session rather than last forever.)

Requiring verification once per month had a training
advantage; verification was frequent enough to remind
users to bring their phone when traveling or update
their registered phone number after a change. Now if
users go a long time without typing a 2sv validation
code, we might remind them about their 2sv enrollment
and phone number information and perhaps even ask
for a practice code. But we won’t lock them out of their
account if the browser already has a valid 2sv cookie.
We’re reasonably satisfied with this balance.

A final interesting observation about 2sv is that it’s
abused by account hijackers. After stealing the account
password and breaking in to the account, hijackers add
2sv (with their own phone number) just to slow down
account recovery by the true owner! Anecdotally,
we’ve heard that the online game World of Warcraft—
one of the few other consumer services that has very
widely deployed two-factor authorization—has seen
the same phenomenon.

In the future, we envision users will
own enough authorized devices
that they can always use an old
device to authorize a new one.

www.computer.org/security� 19

From a security perspective, 2sv is effective against
the common failure modes of reused passwords and
lost password hashes, but in the long term, it will be
ineffective against clever phishing. It won’t protect
users against someone who steals both their pass-
words and phone. We’re aware of two targeted account
hijackings getting past 2sv: in one, the attackers alleg-
edly used social engineering against the phone net-
work, resulting in loss of SMS; in the other, they
allegedly used malware on the phone, resulting in loss
of voicemail.

Smartcard-Like USB Token
With the current version of 2sv, users type a code into
a new device to authorize it. To better protect against
phishing and, at the same time, to make the server side
immune to authentication database theft, we’re inter-
ested in smartcard-like solutions based on asymmetric
or public-key cryptography.

Others have tried similar approaches but achieved
little success in the consumer world. Although we rec-
ognize that our initiative will likewise remain specula-
tive until we’ve proven large-scale acceptance, we’re
eager to test it with other websites, following three guid-
ing principles:

■■ For maximum portability, this method mustn’t
require software installation on the host other than a
compliant Web browser.

■■ One device should be sufficient with a reasonable
number of websites for which users have accounts.
But, for privacy preservation, the websites mustn’t be
able to correlate users based on the device.

■■ User device registration with target websites should
be simple and shouldn’t require a relationship with
Google or any other third party. The registration and
authentication protocols must be open and free for
anyone to implement in a browser, device, or website.

Our first implementation of such a solution has been
an experimental USB token for 2sv. The token speaks on
USB without needing special operating system device
drivers. A higher-level protocol specifies packet formats
for obtaining signed assertions from this token and can
be exercised by application-level code on the host OS.
The USB token also has a capacitive touch-sensitive area
for user confirmation.

We’re currently working on an internal pilot of this
2sv token to validate the form factor and user experience.
Consumer provisioning should allow users to buy a com-
pliant token from a vendor of their choice, insert it into a
computer where they’re already authenticated to a web-
site, and register their token with a single mouse click.

A compliant browser will make two new APIs

available to the website to be passed down to the
attached hardware. One of these APIs is called during
the registration step, causing the hardware to generate
a new public-private key pair and send the public key
back to the website. The website calls the second API
during authentication to deliver a challenge to the
hardware and return the signed response. The protocol
specification calls for a key-generation process inside a
secure element with attestation and for the private key
to never be exposed outside.

Besides the physical controls we mentioned, addi-
tional privacy protections are built in to the 2sv token.
Note that the secure element never returns a previ-
ously generated public key in any new registration
step. This makes tracking users across websites diffi-
cult by using the token as a supercookie that bypasses
other anonymizing precautions. Furthermore, the
browser provides the token with a hashed identifier
of any website requesting a signing operation. This
allows the token to withstand tracking attempts in
which a website shares the registered user’s public key
with another website as well as datacenter intrusion
attacks in which public keys are stolen. Finally, the
protocol allows for extensions for the website to send
a display string to the user, which we will use for anti-
malware mitigation.

We recognize that multiple form factors are neces-
sary for broad consumer adoption. A removable USB-
based token with lean and audited firmware has a small
attack surface for malware and a clear mental model for
privacy. However, having to carry an additional token
is likely to be a barrier to adoption for many consum-
ers. Some more appealing form factors might involve
integration with smartphones or jewelry that users are
likely to carry anyway. We’d like your smartphone or
smartcard-embedded finger ring to authorize a new
computer via a tap on the computer, even in situations
in which your phone might be without cellular con-
nectivity. For many users, travel is likely to present the
need to sign in to a new machine. We’re finding that
the biggest technological challenge isn’t cryptography
but the lack of a standardized interface on consumer
platforms for device-to-device interaction in the real
world. Some technologies with which we’re experi-
menting are unsecured radio frequency communica-
tion (RFCOMM) (unpaired Bluetooth) and near-field
communication (NFC).

In the future, we envision users will own enough
authorized devices that they can always use an old
device to authorize a new one and will only need a
strong password for deep backup. As the overall authen-
tication system strengthens, we predict that authoriza-
tion flow will be the next avenue of attack, so we seek to
harden this process in advance.

20	 IEEE Security & Privacy� January/February 2013

View from the C-Suite

Channel Bindings
We have been focusing on how clients authenticate to
the server because authentication in the other direc-
tion is settled: Secure Sockets Layer (SSL) with server
certificates. Let’s see now how SSL can harden client
authentication.

Entering a username and password in a Web login
page for user authentication, or a 2sv code for client
device authentication, sets a cookie in the browser’s local
storage. Although browsers provide various defenses
against rogue JavaScript stealing these cookies, they’re
typically less protected than the private keys associated
with SSL client certificates,
which can be stored in the
OS’s keychain or
even under hardware
protection, such as
a Trusted Platform
Module (TPM) or
smartcard. This leads
to the idea of using
client certificates
and SSL session
secrets instead of cookies. Although client certificates
have been around since the early days of the Web, they
never became popular because the user interface for
adding them was painful, often involving complicated
sequences of browser- and platform-specific popup
screens with no website customization. Using a single
client certificate is a privacy mistake because it enables
tracking; on the other hand, using multiple client cer-
tificates and asking users to select one manually is a
burdensome user experience. Given these disadvan-
tages, the consequent widespread use of cookies, and
the amount of application software that would need to
be updated, the idea of switching to client certificates
seems infeasible.

However, a new approach shows great promise—
binding cookies cryptographically and automatically
to the SSL client. The first time a compliant browser
talks to a new domain, it automatically generates a key
pair, which is reused for future SSL connections to that
domain. Cookies (or other bearer tokens) can be bound
to that client key so that they’re usable only inside con-
nections that the client initiates.9

We used a fast public-key cryptosystem, elliptic
curve P256, and used the public key directly rather
than a self-signed X.509 certificate. The computation
and network overhead was low, even with the new TCP
connections. In a typical serving architecture, the SSL
terminator on a front-end server passes the client public
key (or its hash) to the back-end server. Back-end serv-
ers can adopt channel bindings incrementally whenever
they’re ready for the change.

This feature, called ChannelID in Chrome browser
version 24, is being deployed with no user-visible effect.
It’s just a silent hardening of the platform, an unusually
pleasant way to roll out new security features. In keeping
with the zero-user-interface design, deleting browser
history or cookies and site data will automatically delete
the corresponding domain key pairs. Moreover, alterna-
tive browser profiles and incognito mode use different
key pairs, just as they use different cookies and site data.

Using the TPM chip built in to many laptops for hard-
ware-protected cryptography is another appealing way
to protect these private keys and limit loss from malware

or disk imaging. We hope
our efforts will encourage

hardware vendors to
more widely include
higher-performance
TPMs that could
be employed for
this purpose. In the
meantime, we plan
to experiment with
the smartcard-like

USB token as a semi-permanent secure element in com-
puters. Such a USB token becomes a kind of “ignition
key” that locks a user’s computer as soon as it’s removed.

Server-Side Technology
For server authentication by the client device, the
situation is better. Most browsers can verify SSL cer-
tificates properly, and sites can turn on features such
as HTTP Strict Transport Security to prevent down-
grade attacks. Although we must remain vigilant for
SSL protocol and implementation mistakes—and
server key compromise—the largest observed risk of
man-in-the-middle attacks on SSL is the compromise
of root certificate authorities, such as Diginotar. Even
exotic attacks grow in importance over time, so we’ve
focused substantial effort on certificate transparency
and related ideas.

Certificate transparency ensures that server certifi-
cates are published in a few well-known locations, so a
website operator can verify that it holds the only cer-
tificates that can authenticate as its servers. A browser
that receives a server certificate gets cryptographic
proof that it’s been published as well as supplemental
processes to catch unreliable publishers, attackers who
compromise the central systems, or even a government
coercing the central players. Because correct operation
of the logs can be verified independently, this scheme
doesn’t introduce yet another trusted party.10

Risk analysis is often left out of authentication dis-
cussions because it’s invisible to the user, but it’s an
important part of the system. For average users with

ChannelID in Chrome browser version
24 is being deployed with no user-visible
effect. It’s just a silent hardening of the

platform, an unusually pleasant way
to roll out new security features.

www.computer.org/security� 21

weak or reused passwords, this back-end risk-based
checking is particularly critical to reduce what would
otherwise be widespread account hijacking. If 2sv and
other two-factor systems comprise “something you
know” and “something you have,” this might be called
“somewhere you are” and “some way you behave.” A
geolocation pattern of login IP addresses that is violated
suddenly should trigger extra concern. The server might
post an alert, as Gmail’s Web interface does when detect-
ing an unusual country of login. As with credit card risk
analysis, it must allow for people going on vacation. In
more extreme risk signal cases, forcing users to answer
additional questions to verify identity might be justi-
fied. Some of these risk signals are sophisticated, going
well beyond login geolocation to include users’ behav-
ior after they’ve logged in. It can be difficult to design
these notification and challenge systems to work effec-
tively without creating extra opportunities for phishing
attacks by mimicry.

A server can adopt a federated login approach, effec-
tively letting one server pass the burden of validating
user authentication to another server using browser
redirection. This is especially appealing for small web-
sites, which can leverage large sites’ much richer set of
authentication and risk analysis technologies to over-
come new users’ reluctance to create and manage yet
another account.

Service Accounts and Delegation
Trying to eliminate passwords in the real world revealed
two important aspects that are worth mentioning:
authentication by applications and account sharing.

Programs like the Secure Shell (SSH) client or a
Web browser executing RSA operations speak directly
on behalf of a person. Other programs, such as print
servers, also need strong identity yet have existence
independent of any person.

Authenticating programs differs from authenti-
cating people in some important ways. For instance,
there’s often no good place to store a credential.
Passwords certainly shouldn’t be hardwired into the
source code or in a command invocation line; most
developers have learned to avoid these rookie security
mistakes. But storing them in a configuration file is
problematic; how do we control access to the file from
an unauthenticated program? And if the program is
authenticated, why does it need to read a credential?
Do we update the password every time developer team
membership changes?

Cloud computing “service accounts” are a mod-
ern solution to this problem. We can rely on the cloud
infrastructure to testify about a program’s identity to
other components or even outside systems. Think of
the cloud infrastructure as holding the equivalent of a

smartcard with a private key that it uses on behalf of the
program. For instance, consider the case of applications
running on Google App Engine (GAE). There are three
common design patterns:

■■ GAE provides some built-in sensitive resources, such
as the Datastore. When an application gets a handle
for talking to the Datastore, it comes with implicit
authentication. The application can be confident that
any data it puts in the Datastore is accessible only to a
future instance of itself and not to other apps.

■■ GAE enables the app to reach other resources par-
ticipating in the OAuth authentication ecosystem
we describe later. For example, the GAE app named
1234567@appspot.gserviceaccount.com can acquire
an OAuth token valid for one hour, scoped to the
Google Docs API.

■■ GAE participates in lower-level handshakes, allowing
an app to talk to proprietary architectures. Assume
that an app has to authenticate itself to a particu-
lar bank’s gateway, which mediates access to various
other resources. The app can request GAE to sign a
blob with the RSA private key that GAE manages for
it. The app uses that token to authenticate to the bank
gateway, which replies with a bank-specific credential
that the app can use to access other resources directly.
In this pattern, GAE automatically manages the app’s
public key, and the bank obtains it from a well-known
discovery endpoint.

Our final topic, delegation, often applies to these ser-
vice accounts but also meets real-world personal needs,
as we learned when we began actively fighting password
sharing in our organization. Generally, delegation refers
to an account owner granting a third party scoped access
to the account, possibly involving restrictions to certain
objects or actions. In the narrowest case, the delegated
scope might include only knowledge of the account’s
email address, so delegation is one implementation of
federated login.

The best delegation systems might be the ones
tightly integrated with an application. For example,
email account owner Alice designates deputy Bob
by explicitly authorizing the deputy’s account bob@
example.com to read Alice’s incoming messages and
to send messages with an authenticated address such
as “From: Alice <alice@example.com> (sent by bob@
example.com).”

Such integrated application behavior can provide
productive sharing without granting full account access.
Alice might trust Bob to read and send email but not to
approve payments over some threshold.

Adding delegation features to each application inde-
pendently would require a lot of implementation effort

22	 IEEE Security & Privacy� January/February 2013

View from the C-Suite

and likely lead to gratuitously different systems. Web
service providers searched for a substitute to the bad
practice of users giving away their passwords to third
parties for scraping information like contacts, and came
up with multiple independent protocols like Google’s
AuthSub, Yahoo’s BBAuth, and Facebook’s Login. The
industry has recently made great progress toward a uni-
fied standard under the OAuth 2.0 umbrella.

OAuth provides a way to grant scoped access to
an account using a bearer token inside SSL, which the
account owner can revoke on a per-delegation basis.11
As a potential improvement, we envision that OAuth
bearer tokens could be channel-bound to an SSL ses-
sion that uses client authentication.

An aside on terminology: there is another authen-
tication standard called OATH that has nothing to
do with OAuth. The Google Authenticator App for
Android, Blackberry, and iOS implements the HMAC-
based OTP (HOTP) algorithm (RFC 4226) and the
Time-based OTP (TOTP) algorithm (RFC 6238),
which are central to OATH. It’s easy to get confused by
the proliferation of labels.

The Google Cloud Print architecture provides a nice
example of both service accounts and delegation. When
printing a document, users share limited-time read
access to that one document with the service account
embedded in the cloud-ready printer. The service
account identifies itself with an OAuth2 refresh token
obtained using a version of the OAuth2 device flow.
Users don’t need to grant the printer any more access
to their personal information than the contents of the
document. Conversely, the printer (which might be in
a public location) doesn’t give users direct connectivity
or authority.

A long with many in the industry, we feel passwords
and simple bearer tokens, such as cookies, are no

longer sufficient to keep users safe. We’re investing in these
client-side technologies and authentication methods
using one-time passwords and public-key-based technol-
ogy to strengthen user and device authentication.

Acknowledgments
We thank Ben Lauri, Brian Eaton, Diana Smetters, Dirk Bal-
fanz, Eric Sachs, Frank Cusack, Marc Donner, Marius Schilder,
Naveen Agarwal, Nishit Shah, Roberto Ortizr, Sam Srinivas,
Úlfar Erlingsson, the rest of the 2sv team, and the anonymous
referees for helpful comments and material.

References
1.	 J. Fallows, “Hacked!,” The Atlantic, Nov. 2011; www.

theatlantic.com/magazine/archive/2011/11/hacked/
308673.

2.	 “Tennessee Man Convicted of Illegally Accessing Sarah
Palin’s E-mail Account and Obstruction of Justice,” Dept.
Justice, 30 Apr. 2010; www.justice.gov/opa/pr/2010/
April/10-crm-509.html.

3.	 M. Honan, “How Apple and Amazon Security Flaws Led to
My Epic Hacking,” Wired, 6 Aug. 2012; www.wired.com/
gadgetlab/2012/08/apple-amazon-mat-honan-hacking.

4.	 K. Bhargavan and A. Delignat-Lavaud, “Web-Based
Attacks on Host-Proof Encrypted Storage,” Workshop
Offensive Technologies (WOOT 12), Usenix, 2012; http://
moscova.inria.fr/~karthik/pubs/host_proof_woot12.
pdf.

5.	 F. Pesce, “Lessons Learned from Cracking 2 Million
LinkedIn Passwords,” Qualys Security Labs, 8 June
2012; https://community.qualys.com/blogs/security
labs/2012/06/08/lessons-learned-from-cracking
-2-million-linkedin-passwords.

6.	 K. Stevens and D. Jackson, “Zeus Banking Trojan Report,”
Dell SecureWorks, 11 Mar. 2010; www.secureworks.
com/research/threats/zeus.

7.	 “Ensuring Your Information Is Safe Online,” Google
Official Blog, 1 June 2011; http://googleblog.blogspot.
com/2011/06/ensuring-your-information-is-safe.html.

8.	 J. Fallows, “Gmail’s 2-Step Verifications: Some
FAQs,” The Atlantic, 9 Aug. 2012; www.theatlantic.
com/technology/archive/2012/08/gmails-2-step
-verification-some-faqs/260934.

9.	 M. Dietz et al., “Origin-Bound Certificates: A Fresh
Approach to Strong Client Authentication for the Web,”
Usenix Security Symp., Usenix, 2012; https://www.usenix.
org/conference/usenix security12/origin-bound
-certificates-fresh-approach-strong-client-authentication.

10.	 B. Laurie, A. Langley, and E. Kasper, “Certificate Trans-
parency,” Internet Engineering Task Force, 29 Nov. 2012;
http://tools.ietf.org/html/draft-laurie-pki-sunlight.

11.	 D. Hardt, “The OAuth 2.0 Authorization Framework,”
Internet Engineering Task Force, 31 July 2012; http://
tools.ietf.org/html/draft-ietf-oauth-v2.

Eric Grosse is vice president of security engineering
at Google. His research interests include all areas of
practical computer and network security and privacy.
Grosse received a PhD in computer science from
Stanford. He’s a member of ACM, IEEE, and SIAM.
Contact him at ehg@google.com.

Mayank Upadhyay is principal engineer at Google. His
research interests include many aspects of Web secu-
rity, wireless network security, and usability. Upad-
hyay has an MS in computer science from Stanford.
Contact him at mayank@google.com.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

